Игры и Люди

… одетый только в халат из холщовой ткани, ходил в кабачки и к певичкам. Когда его спрашивали, почему он таков, он каждый раз открывал рот, засовывал туда кулак и не говорил. Император Лян-цзун призвал его и спросил: «Каков принцип Вашего Пути?» Гуйчжэнь ответил: «Одежда тонка — поэтому люблю вино, выпью вина и защищусь от холода, напишу картину — и расплачусь за вино. Кроме этого, ничего не умею». Лян-цзун не нашелся, что сказать…

От игрушек детства мы движемся к другим. Здесь — об этом.

Алхимия игры включает несколько ингредиентов.

Рецептура состоит из Миров, по которым можно путешествовать; не все из них достаточно хорошо населены. Дело — это Игрушка одного из миров.

Объединяя видимые и сокрытые элементы, Алхимия выступает и как самостоятельный Игрок.

Google+

Алгоритм MUSIC: MUltiple SIgnal Classification в оценке спектра

Вот мы наконец и добрались до этого метода. Литературы по этой технике — целая куча, но как обычно смысл ускользает. Само описание MUSIC достаточно простое: это поиск экстремума произведения двух матриц. Однако что происходит внутри этих матриц — с этим нам предстоит разобраться.

Эту тему довольно сложно понять с нуля, не имея относительно прочной опоры в линейной алгебре. Поэтому нам понадобится аэродром подскока — пара статей, которые я написал ранее: собственные числа и векторы в поиске закономерностей. Метод главных компонент и ковариационная матрица и линейная трансформация. Прочитайте их еще раз, и мы детально, шаг за шагом совершим увлекательное путешествие по пространствам (в буквальном, математическом смысле), а путеводителем для нас будут собственные числа и векторы матриц, которые описывают преобразования этих пространств. Как обычно, ассистировать нам будет Python: строгая нотация языка программирования не допустит никакой двусмысленности, особенно в описании структуры и размерности матриц, чем частенько грешат различные статьи.

Будем рассматривать один частный случай — пример входного сигнала для алгоритма, и на основе этого случая будем делать обобщения на все возможные случаи. За доказательством справедливости этих обобщений отсылаем дотошных читателей к многочисленной литературе; здесь во главу угла поставлена простота и доходчивость изложения.

Компактный симпатичный спектр из двух частот

Зададим исходные данные. Будем иметь дело с сигналом, состоящим из двух частот; также подмешаем немного шума, для реальности происходящего:

На самом деле, мы будем наблюдать смесь этих сигналов, и наша задача — определить какие частоты присутствуют в его спектре. Поэтому наблюдаемый сигнал X будет суммой этих массивов:

Суммирование идет по выборкам, о чем говорит выбор оси axis=1. Поэтому размерность полученной матрицы будет N x N.

Как и во многих алгоритмах линейного предсказания, в том числе и в MUSIC, конкретная реализация сигнала не представляет большого интереса. Гораздо более важной и обобщенной характеристикой является корреляционная матрица Rxx, выявляющая внутренние связи во входных данных X:

А теперь — прощай, сигнал X! В нашем алгоритме ты нам больше не понадобишься. Вместо тебя будет работать твоя корреляционная матрица Rxx. Сразу скажу, что быть на сцене ей тоже осталось недолго: после того как мы находим собственные числа en и векторы ev корреляционной матрицы Rxx, она тоже перестает быть нужной:

Гарантирую, что с этого момента вы потеряли нить и вам расхотелось читать дальше ) Поэтому самое время остановиться и понять смысл того, что мы делаем. Тем более что большую часть алгоритма мы уже прошли: осталось фактически только одно последнее действие ) Вот она, обманчивая простота матриц!

Итак, наступил обещанный момент погружения в матричные пространства.

Зачем нужны собственные числа и векторы

Идея метода MUSIC состоит в разделении пространства входных сигналов на сигнальную часть и помеховую. Для пространства сигналов существует свой базис, в котором может быть разложена корреляционная матрица Rxx. Поскольку Rxx является самосопряженной (сравниваем Rxx и Rxx.H в Питоне — это одно и то же), то базис разложения будет ортогональным и будет представлять из себя не что иное, как собственные векторы матрицы, масштабированные собственными числами. Что такое ортогональное разложение вы конечно же помните из школьной геометрии, когда рисовали проекции вектора на ортогональные оси x и y. Только это было двумерное пространство, которое легко представить геометрически, а в нашем случае размерности пространства N только и остается, что положиться на формулы.

Проверим, соответствует ли Rxx разложение по ортогональному базису:

результат будет соответствовать Rxx.

Теперь мы можем предположить, что одна часть собственных векторов, участвующих в разложении Rxx, соответствует сигналу, а другая часть — помехе. Будем также держаться предположения, что полезных сигналов — P, а все остальное в количестве N-P это помехи или шум. Наше предположение некоторым образом подтвердят собственные числа, если мы расставим их в порядке убывания:

По собственным числам можно судить об уровне входных сигналов: как и ожидалось, первые P=2 это полезный гармонический сигнал, остальное — это помеха. Не откладывая на потом, сразу упорядочим и собственные векторы, чтобы они соответствовали собственным числам, расположенным по убыванию:

Теперь выстраиваем следующую логическую цепочку. Начало ей положит тот факт, что собственные векторы сигнала и помехи — взаимно ортогональны:

результат — вектор практически близкий к нулю, что и означает ортогональность.

Как следствие, пространства сигнала и помехи тогда тоже будут ортогональными и как результат полезный сигнал будет ортогонален пространству помехи. Или другими словами, проверка разложения сигнала на базис помехи, образованный ее собственными векторами, покажет ноль. В этом и есть суть метода, при этом естественно не зная составляющего сигнала, в методе он подменяется комплексным опорным экспоненциальным вектором, который является функцией частоты. Путем сканирования частоты подбирается такое значение этого вектора, при котором его разложение на базис помехи будет близок к нулю. При этом зафиксированное значение частоты будет соответствовать факту ее присутствия во входном сигнале.

Разложение экспоненциального вектора на базис помехи

Теперь все дело за тем, как правильно записать нотацию искомого разложения. Собственные векторы помехи мы уже выделили раньше: это вектор EV. Вектор комплексных опорных сигналов будет иметь размерность N:

Значения частот будем перебирать из диапазона:

Абсолютное значение спектра будем находить как модуль разложения REF*EV.H*EV*REF.H.

Тогда полный цикл перебора опорного вектора будет выглядеть так:

Для удобства отображения графика, полученные значения масштабируются в логарифмическом масштабе.

Заметим еще раз: в цикле подбирается такое значение частоты, чтобы разложение опорного вектора в базисе помехи было максимально близко нулю. Это будет означать ортогональность по отношению к пространству помехи и как следствие — соответствие текущего опорного вектора одному из сигналов.

показан на рисунке.

Начнем с P=2:

MUltiple SIgnal Classification, MUSIC, Eigenvectors, Eigenvalues, Оценка спектра, Корреляционная матрица, Correlation Matrix

Оценка спектра MUSIC для P=2

Здесь неожиданностей нет. На рисунке четко видно два пика относительной частоты 3.0 и 5.0, причем уровень второго сигнала ниже. Мы четко определили наличие двух синусоид в комплексном сигнале в присутствии шума, причем получили значение частот этих сигналов и относительные амплитуды. Теперь возникает интересный вопрос: что произойдет если мы зададим P=1? По идее алгоритм должен посчитать за полезный только один сигнал, а вторую синусоиду вместе с шумом отнести к помехе. Так оно и есть:

MUltiple SIgnal Classification, MUSIC, Eigenvectors, Eigenvalues, Оценка спектра, Корреляционная матрица, Correlation Matrix

Оценка спектра MUSIC для P=1

Поскольку амплитуда второго сигнала была ниже, в пищевой цепочке собственных значений он оказался крайним и был подавлен. Остался только сигнал большей амплитуды с частотой 3.0.

Продолжаем эксперимент.  Теперь предположим, что на входе три полезных сигнала, то есть P=3. Что произойдет если белый шум также будет засчитан на равных как нечто полезное?

MUltiple SIgnal Classification, MUSIC, Eigenvectors, Eigenvalues, Оценка спектра, Корреляционная матрица, Correlation Matrix

Оценка спектра MUSIC для P=3

Получилось довольно неприятно, но не смертельно. Третий всплеск конечно достаточно большой по амплитуде, и такой же всплеск наблюдаем на нулевой частоте. Но мы сами задали шуму приличный уровень — 0.5, так что метод MUSIC довольно лояльно относится к тому, что мы неточно определили количество полезных сигналов.

Продолжим расширять наше представление о количестве полезных компонент и зададим P=4:

MUltiple SIgnal Classification, MUSIC, Eigenvectors, Eigenvalues, Оценка спектра, Корреляционная матрица, Correlation Matrix

Оценка спектра MUSIC для P=4

Как ни странно, картинка стала даже еще лучше. Как и в предыдущих случаях, два полезных сигнала занимают максимум лепестков диаграммы, и хорошо заметно что ошибка в предсказании P дает ее заметное искажение.

Теперь, после того как мы использовали MUSIC для оценки частотного спектра, можно переходить к пространственным частотам — определению направления прихода сигнала, чем мы так любим заниматься в радиопеленгации. Об этом поговорим в следующей статье. И не забывайте что эта тоже была аэродромом подскока!

 

 

 

АРП DF-2000: что пошло не так с этим радиопеленгатором

Историю современных радиопеленгаторов для аэропортов гражданской авиации можно отсчитывать от момента появления новой версии АРП «Платан» с процессорной обработкой и операционной системой. В то время было принято, что радиоприемные устройства (РПУ) — покупные «Юрки» будут компромиссным решением (за неимением радиоприемника своей разработки). Вначале разрабатываемое цифровое РПУ было частью пеленгационного проекта, но со временем руководство конторы решило выделить его в отдельное направление. Возможно, повлияло желание сделать унифицированный со связным приемник, хотя у каждой унификации есть своя цена. Но не будем забегать вперед )

По завершении разработки нового АРП «Платан» я переключился на собственные проекты, но продолжал интересоваться ходом модернизации пеленгатора, который должен был обзавестись своим радиоприемным трактом. И он появился: РПУ, более известное под названием ФИС, было выполнено на профессиональном уровне инженерами которые тогда еще работали в конторе (ну вот, снова вперед забежал). Классическая супергетеродинная схема с перестраиваемым преселектором обеспечивала отличные характеристики электромагнитной совместимости (ЭМС), такие как избирательность по соседнему каналу, подавление интермодуляционных продуктов. Ведь не секрет что эфир со временем не становится чище, и разнообразных помех, таких как профессиональные и любительские радиостанции, станций GSM, Wi-Fi и других становится все больше и больше. Поэтому обеспечение ЭМС выходит на первый план, тем более что современные радиокомпоненты позволили практически закрыть вопросы чувствительности АРП и улучшения отношения сигнал/шум.

Как и в АРП «Платан» с Юрками, так и с ФИСами у эксплуатации не было никаких нареканий. Но начиная с определенного времени, замечания посыпались. Вплоть до таких, как:

«у радиопеленгатора DF-2000 во время грозы, ложные пеленги на всех частотах. Думаем, что надо чувствительность прм. уменьшать,пока ждем ответа заводчиков» (с форума инженеров ЭРТОС).

На АРП с ФИС нареканий нет:

«У нас один из первых DF-2000 с ФИС ами. Ложных пеленгов на метеоявления, в отличии от АРП-75, не наблюдалось ни разу с 2008 года»

Это удивительно, потому что в радиопеленгаторе «Платан» была эффективная схема фазового обнаружения сигнала, которая давала очень низкие уровни вероятности ложной тревоги. И «пробить» ее на ложный пеленг, тем более при грозовых электромагнитных возмущениях, было нереально. Было очевидно, что что-то пошло не так. В конечном счете, причина была найдена: сбои в работе АРП DF-2000 были связаны с очередной модернизацией, а именно с заменой ФИС на цифровой приемник. Само собой, эта эволюция проходила уже без моего участия.

С этого места начинаем смотреть подробнее — как выполнен цифровой приемник, какая у него структура и где источник проблемы.

Цифровой радиоприемник в АРП DF-2000: тотальная «оптимизация»

Структурная схема пеленгационного приемника приведена на рисунке. Собственно говоря, это тот же самый приемник RS-2000, который используется в приемных центрах TRS-2000 производимых и поставляемых АО «Азимут». Разница лишь в фрагменте по правую сторону от АЦП — в программном обеспечении. И в том, что этот аппаратно одночастотный приемник превратился в РПУ, работающий на 4-х частотных каналах одновременно.

Ключевой аспект в этой истории — как раз слово «одновременно».

Конечно, сократить вчетверо объем радиоприемного оборудования — это хороший выигрыш по затратам. Рост стоимости радиопеленгатора идет за счет увеличения количества каналов, или РПУ. Вопрос лишь в цене: какими техническими характеристиками за это заплачено?

АРП, DF-2000, Цифровой радиоприемник, блокирование, SDR, Software Defined Radio, АРП Платан

Аналоговая часть РПУ радиопеленгатора DF-2000 представляет приемник прямого усиления.  Разделение частотных каналов происходит после оцифровки АЦП. Преселектор отсутствует, поэтому весь эфир из диапазона 118 -136 МГц поступает на вход АЦП.Внимание: такая схема построения подвержена блокированию и имеет плохие характеристики ЭМС!

Смотрим тракт начиная с антенной системы. Принимаемый сигнал усиливается в приемнике прямого усиления, с помощью АРУ загоняется в диапазон входных сигналов АЦП, и далее цифровая обработка сигналов выделяет свой частотный канал, подавляя сигналы других радиостанций. Поскольку в отличие от классической супергетеродинной схемы здесь нет преселектора, подобная структура имеет все недостатки приемников SDR. В одной статье я уже ссылался на подробное описание этих недостатков, сделаю это еще раз:

«Основным недостатком, ограничивающим широкое применение подобного типа РПУ (с прямой оцифровкой сигнала с антенны — мое примечание), является невозможность обеспечения высоких уровней динамического диапазона по блокированию. Поскольку на входе АЦП отсутствует фильтрация, то АЦП соответственно не может выполнять оцифровку одновременно сигналов большого и малого уровня. В соответствие нормам ГОСТ радиоприемник должен обеспечивать уровень восприимчивости по блокированию не менее 126 дБ/мкВ для РПУ второго класса и 130 дБ/мкВ для РПУ первого класса. Очевидно, что существующие типы АЦП 14-16 бит не в состоянии обеспечить выполнение этого параметра.

Кроме этого, РПУ данного типа недостаточно качественно осуществляют обработку сигналов малых уровней. При приеме сигналов уровней чувствительности, рост ошибок квантования, вызванный недостатком разрядности АЦП, вызывает невозможность качественного приема. Естественно, что эти ограничения разработчики пытаются снижать конструктивными и программными средствами, но до появления на рынке высокочастотных АЦП с разрядностью не менее 24 бит, приемники данного типа не смогут соответствовать современным нормам по электрическим параметрам и составить полноценную конкуренцию аналоговым РПУ».

Поскольку приемник прямого усиления никак не защищает вход АЦП от помех, то сигналы любого радиопередатчика из диапазона 118 — 138 МГц и не только — будут напрямую давить на вход АЦП и снижать его реальный динамический диапазон. Чужие радиостанции, VOR, DVOR, даже импульсные сигналы локаторов — будут способствовать блокированию АЦП, и дальнейшая цифровая фильтрация будет бессмысленной. Собственно, этот процесс и наблюдается в эксплуатации.

АРП DF-2000 блокирует сам себя: принципиальные ошибки построения тракта обработки

Вернемся к нашему рисунку. Проведем мысленный эксперимент: будем наблюдать одновременное прохождение пеленгуемых частот f1, f2, f3, f4 через приемный тракт. При этом создадим для АРП льготный режим: представим, что помех вообще никаких нет, то есть в районе аэродрома выключены все связные и радионавигационные устройства. И представим, что эти сигналы имеют одинаковый уровень: на связь одновременно вышли четыре борта с одинаковой мощностью радиостанции и на одинаковом расстоянии.

С антенны все четыре сигнала усиливаются в приемнике прямого усиления и подаются на вход АЦП. Автоматическая регулировка усиления (АРУ) наблюдает суммарный сигнал и не в состоянии различать сигналы по частотам, поэтому к 16-разрядной сетке АЦП будет приведена сумма сигналов f1, f2, f3, f4 и как результат каждый из них будет подавлен в 4 раза. Я хочу подчеркнуть еще раз: все, что находится в эфире в полосе 118 — 136 МГц — свои сигналы с борта и многочисленные источники излучения в этом диапазоне, будет усилено и поступит на вход АЦП, поскольку в АРП DF-2000 приемник не имеет преселектора, то есть 2 бита из 16 динамического диапазона АЦП мы уже потеряли. В цифровой части после АЦП помеховые сигналы отфильтровываются четырьмя фильтрами, каждый из которых настроен на частоту канала пеленгования, и извлекается пеленгационная информация. Пока все ОК.

Теперь изменим исходные условия и сделаем их приближенными к реальности. На высоте 10000м на дальности 350км летит борт, который выходит на связь. Такая дальность для АРП не диковинка: ее максимальное значение при такой высоте и мощности радиостанции 5Вт по ТТЗ составляет 360км. Поэтому радиопеленгатор должен отработать без проблем. Поскольку приемник прямого усиления DF-2000 усиливает все подряд в диапазоне 118 — 136МГц, на входе АЦП будет все, что работает в этой широкой полосе в районе аэропорта. Не будем считать мощные помехи от VOR, DVOR, а также гармоники мощных сигналов первичных и вторичных радиолокаторов. Ограничимся рассмотрением передатчиков местного приемо-передающего центра; предположим что в определенный момент на передачу выходят одновременно 8 радиостанций. Тогда на входе АЦП будет смесь слабого сигнала с борта и мощных радиостанций центра.

Вообще-то такие условия не вызывают затруднения для классического супергетеродинного РПУ или цифрового приемника с преселектором. В первом случае посторонние сигналы будут просто подавлены в тракте промежуточной частоты, во втором — ослаблены в преселекторе. Главное — чтобы сигналы не блокировали друг друга, тогда сохраняется возможность фильтрации.

В нашем случае главный подозреваемый на блокирование — АЦП. Если его небольшой динамический диапазон будет перегружен, то никаких нормальных сигналов на выходе мы не увидим.

Продолжаем наши опыты ) Для того, чтобы попасть в динамический диапазон, приемнику придется задействовать АРУ таким образом, чтобы сумма сигналов на входе АЦП не превысила максимального значения. При этом необходимо контролировать не суммарную мощность, а амплитуду. За счет биений суммарный сигнал максимальной амплитуды будет равен сумме амплитуд полезного сигнала и помехи.

Как и в предыдущем примере, АРУ откалибрует суммарный сигнал только по самому сильному составному — в нашем случае по помехам которые создает передающий центр. Усиление будет достаточным только для прохождения помех, а наш сигнал с борта потеряется на уровне младших битов АЦП.

Говоря другими словами, в четырехканальном тракте частота самого сильного сигнала блокирует сигналы более слабых передатчиков. То есть, в этом случае никакой «одновременной» работы четырех каналов радиопеленгатора не получается.

Это гипотеза, осталось подкрепить ее цифрами.

Считаем уровни

Найдем соотношение полезного сигнала и помех. В качестве помехи, как мы условились раньше, будем считать 8 передатчиков передающего центра, расположенные от АРП на расстоянии 500м. Для расчета будем пользоваться зависимостью потерь распространения в свободном пространстве FSPL (Free Space Path Loss, потери распространения в свободном пространстве):

\displaystyle\large FSPL=\bigg(\frac{4{\pi} R}{\lambda}\bigg)^2

Разница в дальностях до борта и передающего центра дает искомое соотношение; для R1=350км, R2=0.5км получаем:

\displaystyle\large \frac{FSPL_2}{FSPL_1}=\bigg(\frac{R_1}{R_2}\bigg)^2=490000=56.9dB

Теперь нужно учесть разницу между мощностями сигналов бортовой и наземных радиостанций, которая составит 100 Вт (земля)/5 Вт (борт) = 20 = 13dB, итого суммарно разница между сильным и слабым сигналом на входе АЦП составит 56.9+13=69.9dB.

По напряжению разница 69.9dB составит 3126 раз. Уточним еще раз: это разница между уровнем по амплитуде одной радиостанции передающего центра и радиостанции борта на входе АЦП. Теперь надо учесть, что радиостанций — восемь. При одновременной передаче максимальные амплитуды суммируются, поэтому разница в уровнях станет еще больше — 3126*8 = 25008. Что там с нашим динамическим диапазоном АЦП? Для 16 разрядов он равен 65536. После того как АРУ уместит суммарный пеленгуемый сигнал в разрядную сетку АЦП, для сигнала борта останется 65536 / 25008 = 2,62 уровня. Это практически 1 бит АЦП, который работает на уровне шума! Для сигнала работает только 1 бит АЦП: вот оно, блокирование.

Заметьте, что теперь нет смысла говорить про частотное разделение сигналов: сигнал с борта до фильтра просто не дойдет. Таким образом, в такой помеховой обстановке АРП DF-2000 борт просто не увидит. Что и наблюдается на практике.

Снова не могу удержаться, чтобы не заметить, что радиотехнику должны разрабатывать не программисты, а инженеры ) Концепция «все загоним в цифру а там уже разберемся» не работает. Как следствие — на выходе дешевое как в смысле стоимости, так и в смысле параметров изделие. Инженеры ушли, оптимизаторы остались.

А жаль, хороший пеленгатор был вначале.

Устойчивость АФАР/AESA радиолокатора F-35 к блокированию T/R модулей

F-35, АФАР, ПФАР, AESA, PESA, Radar, Радиолокатор, Локатор, Antenna  Pattern, блокирование, обнаружение, мощность, TRM, T/R module, Transmit Receive Module

Антенная решетка локатора AN-APG-81 самолета F-35

Бортовые радиолокаторы военных самолетов, предназначеные для поиска и сопровождения целей проходят эволюцию от пассивных фазовых антенных решеток (ПФАР, или PESA — Passive Electronically Scanned Array) к активным фазовым антенным решеткам — АФАР, или AESA: Active Electronically Scanned Array). Базовым элементом и тех и других является приемо-передающий модуль — Transmit/Receive Module, TRM. И если в пассивной решетке он практически в единственном экземпляре, то в активной на каждый элемент приходится по одному TRM.

В локаторе AN/APG-81 истребителя-бомбардировщика F-35 дотошные юзеры насчитали 1676 элементов; можно представить какой объем оборудования займут TRM и какова будет стоимость. АФАР — удовольствие не из дешевых! Но и возможности по сравнению с ПФАР неизмеримо выше: одновременное сопровождение нескольких целей, сканирование произвольных областей пространства, произвольный выбор сигналов и многое другое. Но нас в данном случае интересует не количественное увеличение сложности АФАР, а принципиальные изменения в тракте обработки сигнала, которые за ним последовали.

F-35, АФАР, ПФАР, AESA, PESA, Radar, Радиолокатор, Локатор, Antenna  Pattern, блокирование, обнаружение, мощность, TRM, T/R module, Transmit Receive Module

Transmit-Receive Module, T/R модуль

На фото слева показан T/R модуль, возможно даже от F-35. Каждая сборка обслуживает несколько элементов антенной решетки и содержит малошумящие усилители LNA (цепь приема) и усилители мощности HPA (цепь передачи). Переключение на прием/передачу производится по внешним сигналам управления. Сигнал, принимаемый элементом антенной системы, усиливается LNA и подвергается аналого-цифровому преобразованию. Дальнейшая обработка идет в бортовом сигнальном процессоре.

АФАР/AESA и ПФАР/PESA: что за чем следует

Мы хотим выявить теоретические и практические отличия в образовании диаграммы направленности активной и пассивной антенных систем. В соответствии с принципом обратимости нет разницы, для какого режима — прием или передача проводить анализ, это во первых, и во вторых интересующий нас вопрос блокирования относится сугубо к приему АФАР. Поэтому рассмотрим, как работает диаграммообразующая система (ДОС) в обоих случаях — для AESA и PESA.

F-35, АФАР, ПФАР, AESA, PESA, Radar, Радиолокатор, Локатор, Antenna  Pattern, блокирование, обнаружение, мощность, TRM, T/R module, Transmit Receive Module

Расположение T/R модулей по одношению к диаграммообразующей системе. В АФАР/AESA (активная решетка) T/R модули располагаются до ДОС, в ПФАР/PESA (пассивная решетка) T/R модуль располагается после ДОС. В АФАР фазовый сдвиг вносится в компьютере, в ПФАР — с помощью управляемых фазовращателей

В АФАР сигнал элементов антенны принимается T/R модулями и поступает в сигнальный процессор, который назначает каждому элементу АФАР весовой коэффициент и фазовый сдвиг, после чего после численной обработки все сигналы суммируются. Синфазное суммирование, дающее максимальный сигнал будет формировать основной лепесток диаграммы; сигналы с других направлений будут складываться неоптимальным образом, давая на выходе невысокие уровни, которые мы называем боковыми лепестками.

В ПФАР фазовый сдвиг вносится процессором физически, с помощью фазовращателя через который подключен элемент антенной системы. В этой же антенной системе сигналы суммируются до сигнального процессора, избавляя последний от необходимости производить расчет по каждому элементу ПФАР. В результате точно также формируются основные и побочные лепестки.

То обстоятельство, что АФАР за счет управления амплитудой сигнала антенного элемента может точнее и лучше формировать диаграму по сравнению с ПФАР, является несомненным преимуществом но не играет существенного значения с точки зрения целей нашего рассмотрения.

Итак, математическая процедура ДОС в случае активной и пассивной решетки совершенно идентична: разница лишь в том, что в локаторе с АФАР формирование диаграммы производится в вычислителе, а в локаторе с ПФАР — аппаратно в самой антенной системе. Таким образом, теоретических различий между этими способами реализации — никаких. С практической точки зрения, особых проблем тоже как-бы не видно. Но это только на первый взгляд.

Сейчас мы пришли к той точке, когда программисты, поставив этот знак равенства, успокаиваются и идут пить кофе, а инженеры начинают беспокойно ерзать на своих стульях. И это неспроста! Инженеры знают, что полная аналогия между программной и аппаратной обработкой оправдана только тогда, когда приемный тракт является линейным по отношению к входным сигналам. В реальных же условиях, тем более с учетом радиолокационного противодействия, это может быть совсем не так. И тут уже появляется принципиальная разница в поведении ДОС у активной и пассивной решетки, и эта разница совсем не в пользу АФАР. Приступаем к эксперименту.

Ставим помеху, или как jamming портит красивую картинку

Эксперимент будет проходить следующим образом. Устанавливаем источник помехи и будем наблюдать, какое воздействие это возымет на АФАР и ПФАР. Требования к помехе не сильно жесткие: достаточно, чтобы ее мощность создавала достаточный уровень в динамическом диапазоне T/R модулей; тип модуляции не принципиален, частота тоже: достаточно чтобы она была в достаточно широкой полосе пропускания антенных систем. Расположение источника помехи тоже некритично: достаточно лишь, чтобы он находился в диапазоне углового сканирования радиолокатора.

На этом этапе, вслед за программистами уходят пить кофе менеджеры и журналисты. Ведь они прекрасно знают, что для этого и формируется диаграмма направленности, чтобы подавлять подобные помехи. Более того, АФАР прекрасно может запеленговать источник и сформировать диаграмму таким образом, чтобы в направлении помежи был нулевой уровень диаграммы. Поэтому помеха будет подавлена провалом в сформированной диаграмме направленности. Тоже на первый взгляд.

Да, это действительно так, но… опять таки справедливо только тогда, когда тракт приема является линейным. Если помеха является блокирующей, то есть нарушающей линейность тракта, то благостная картинка просто перестает существовать. В ГОСТах, которые формируют требования к профессиональной радиоприемной технике, этот параметр так и называется — блокирование, который определяется как «изменение отклика на полезный радиосигнал при наличии на входе радиоприемного устройства хотя бы одной радиопомехи». Заметьте: в линейной системе сигнал и помеха суммируются независимо друг от друга, поэтому отклик на полезный сигнал не меняется в зависимости от помехи. Это может произойти только в том случае, если помеха нарушает линейность приемного тракта, в нашем случае — приемной цепи T/R модуля, состоящей из LNA и АЦП.

В ПФАР диаграммообразующая система (ДОС) находится до T/R модуля, поэтому последний защищен от блокирующей помехи диаграммой направленности. В идеальном варианте, как было подмечено выше, если источник помехи попадает в ноль диаграммы и на входе T/R модуля она будет равна нулю. Это принципиальный момент, на который я обращаю ваше внимание.

В АФАР ДОС находится после T/R модулей, вследствие чего они беззащитны перед сигналами на своих входах. Минимумы диаграммы подавляющие помехи будут вычисляться также после этих модулей, и поэтому если они будут блокированы, то полезный сигнал на выходе этих модулей просто не попадет — никакие фильтры не помогут.

Постойте, но ведь проблема известна давно. И если покопаться в старинных книжках, то можно найти решение. И действительно, в аналоговой технике радиоприема защитой от блокирования служит большой динамический диапазон, который позволяет проходить маленькому сигналу на фоне неизмеримо более мощной помехи без искажений, что дает возможность отфильтровать помеху в дальнейшем. Такого же подхода можно было ожидать и от приемника TRM — но наличие АЦП в тракте рушит все надежды, и сейчас скажу почему.

Часто можно привести цитату, в которой проблема сформулирована лучше, чем ее можешь сформулировать ты. Сейчас как раз такой случай, поэтому процитирую первоисточник. Он как раз указывает на проблему, присущую радиоприемным устройствам (РПУ) которые используют прямую оцифровку антенного входа с помощью высокочастотных АЦП:

Основным недостатком, ограничивающим широкое применение подобного типа РПУ, является невозможность обеспечения высоких уровней динамического диапазона по блокированию. Поскольку на входе АЦП отсутствует фильтрация, то АЦП соответственно не может выполнять оцифровку одновременно сигналов большого и малого уровня. В соответствие нормам ГОСТ радиоприемник должен обеспечивать уровень восприимчивости по блокированию не менее 126 дБ/мкВ для РПУ второго класса и 130 дБ/мкВ для РПУ первого класса. Очевидно, что существующие типы АЦП 14-16 бит не в состоянии обеспечить выполнение этого параметра.

Вот и все. АЦП принципиально напрочь убивает динамический диапазон, что создает уязвимость АФАР для постановки блокирующей помехи. Осталось только оценить степень ее реализуемости. Для этого нам надо оценить чувствительность T/R модуля в локаторе F-35, чтобы на основе этого значения рассчитать потребную мощность помехи и на каком расстоянии может располагаться ее источник.

Если вы найдете ошибку в нижеследующих расчетах, не стесняйтесь! Смело пишите замечания и предложения в комменты )

Энергетический бюджет радиолинии локатор -> цель -> локатор

Нас интересуют две величины:

  • мощность отраженного от цели сигнала, для оценки потребной мощности джаммера;
  • уровень сигнала на входе антенной системы локатора, для оценки наступления момента блокирования АЦП TRM.

В качестве исходных данных возьмем значения:

Pt = 20kW: мощность передатчика радиолокатора F-35;

λ = 3cm: длина волны для частоты 10ГГц;

Gt = 35dB: коэффициент усиления антенны радиолокатора на передачу, линейное значение: 3162;

R = 400km: дальность до цели;

σ = 3m2 : ЭПР цели.

Фактически, при построении бюджета мы поэтапно воспроизводим основное уравнение радиолокации. Причина, по которой мы его не используем — это необходимость в промежуточных данных и соответственно прозрачность в том, как они получены.

Начнем с самого начала — передатчика. Изотропный излучатель мощностью Pt создаст плотность мощности D на расстоянии R:

\displaystyle\large D=\frac{P_t}{4{\pi}R^{2}} [1]

Такой излучатель будет светить во все стороны одинаково, на то он и изотропный. Конечно, для локатора это может быть неплохим качеством, вот только плотность мощности в заданном направлении будет весьма скромной.

Чтобы ее повысить, используем направленные свойства антенны с коэффициентом усиления Gt, тогда плотность излучаемой мощности [Вт/м2] составит:

\displaystyle\large D=\frac{P_tG_t}{4{\pi}R^{2}} [2]

Очевидно, что с ростом расстояния в знаменателе выражения плотность мощности будет падать, поскольку телесный угол ограниченный диаграммой направленности передающей антенны будет расширяться с ростом дальности.

При облучении цели нашим передатчиком мы будем принимать мощность, зависящую от геометрических размеров цели. Если цель для простоты изложения будем представлять как антенну, тогда принимаемая целью мощность Pr будет зависеть от эффективной площади этой антенны Ae:

\displaystyle\large P_r={DA_e}=\frac{P_tG_tA_e}{4{\pi}R^2} [3]

В свою очередь, эффективная площадь напрямую связана с коэффициентом усиления приемной антенны (читай — цели):

\displaystyle\large A_e=\frac{G_r\lambda^{2}}{4{\pi}} [4]

Выполняя очередную подстановку из [4] в [3], получим значение для уровня принимаемого сигнала в простой радиолинии передающая антенна локатора -> цель:

\displaystyle\large P_r=\frac{P_tG_tG_r\lambda^{2}}{(4{\pi)}^2R^{2}} [5]

Пока все понятно с точки зрения физики за исключением того, как интерпретировать коэффициент усиления цели Gr.

Но мы не будем ломать над этим голову, поскольку этот параметр напрямую связан с показателем ЭПР цели σ соотношением

\displaystyle\large G_r=\frac{4{\pi} \sigma}{\lambda ^2} [6]

Если мы подставим это в предыдущее выражение [5], то получим значение мощности сигнала переотраженного от цели:

\displaystyle\large P_{t2}=\frac{P_tG_t \sigma}{4{\pi}R^2} [7]

Индекс t2 теперь означает, что теперь это другое значение мощности передачи, на этот раз с какой интенсивностью цель светит обратно на локатор.

Теперь распространение пошло в обратном направлении — от цели к приемной антенне локатора, и для радиолинии цель -> приемная антенна локатора мы будем использовать точно такое же выражение [5]:

\displaystyle\large P_{r2}=\frac{P_{t3}G_r G_{r2}\lambda^{2}}{(4{\pi)}^2R^{2}} [8]

Новые обозначения несут следующий смысл:

Pr2: мощность сигнала, принимаемого антенной радиолокатора;

Gr2: коэффициент усиления антенны радиолокатора на прием: очевидно, что он будет таким же, как и Gt. Позже мы вернемся к этому;

Pt3*Gr: мощность отраженного целью сигнала, которая на самом деле есть не что иное, как Pt2.

Подставляя значение Pt2 из [7] вместо произведения Pt3*Gr в [8], получаем:

\displaystyle\large P_{r2}=\frac{P_{t2} G_{r2}\lambda^{2}}{(4{\pi)}^2R^{2}} [9]

\displaystyle\large P_{r2}=\frac{P_tG_t \sigma}{4{\pi}R^2} \cdot \frac{G_{r2}\lambda^{2}}{(4{\pi)}^2R^{2}} [10]

и в результате мощность, принимаемая на выходе антенны радиолокатора, будет равна

\displaystyle\large P_{r2}=\frac{P_t G_t G_{r2}\lambda^{2} \sigma}{(4{\pi)}^3R^{4}} [11]

Я не случайно сделал оговорку: на выходе антенны, поскольку выход — это уже суммирование сигналов T/R элементов, а нас интересует как раз мощность на их входе. Но обо всем по порядку: каркас из формул мы создали, теперь начинаем считать.

Немного о смыслах: физических

Итоговые значения можно схематически представить в следующем виде:

F-35, АФАР, ПФАР, AESA, PESA, Radar, Радиолокатор, Локатор, Antenna  Pattern, блокирование, обнаружение, мощность, TRM, T/R module, Transmit Receive Module

Передаваемые и принимаемые мощности в бюджете радиолинии локатора

Мы можем сразу посчитать порядок значений мощности сигнала отраженного от цели Pt2 [7] для определения сопоставимой мощности, требуемой от источника помехи — джаммера. Что касается мощности Pr2, то это суммарная мощность, образуемая вкладом всех TRM антенны. Собственно в этом физический смысл коэффициента усиления антенны G: собирая сигналы со всех T/R модулей, повышается энергетическая эффективность в направлении синфазного сложения сигналов, то есть в направлении основного лепестка диаграммы. При этом несущественно, является ли антенна дискретной решеткой, как в нашем случае, или представляет собой непрерывную конструкцию, как например рефлекторы спутниковых антенн: все равно, или с физической, или математической точки зрения происходит суммирование (а точнее интегрирование) мощностей, принимаемых парциальными элементами площади рефлектора.

В результате, чтобы оценить мощность сигнала принимаемого каждым T/R модулем, нужно грубо говоря разделить выходную мощность антенны Pr2 на количество модулей, а точнее — убрать значение коэффициента усиления G из формулы [11]. Для сомневающихся предлагаю провести самостоятельный эксперимент: построить диаграмму направленности такой антенны из 1676 модулей и сопоставить площадь основного лепестка с уровнем побочных излучений. Получится тоже самое значение 35 дБ. Собственно говоря, это значение было так и получено.

Тогда уровень сигнала, отраженного от цели на входе TRM будет

\displaystyle\large P_{trm}=\frac{P_t G_t\lambda^{2} \sigma}{(4{\pi)}^3R^{4}} [12]

Вы заметили, как резко снизился порог воздействия на вход TRM — на целых G=35 дБ? Это то, о чем я говорил в начале статьи об особенностях АФАР.

Считаем

Наконец, после долгой возни с формулами, переходим к числам ). Подставляя исходные значения в [7] и [12], получаем:

мощность сигнала отраженного от цели Pt2=-10.2 dBm;

мощность сигнала на входе TRM Ptrm= -144.7 dBm.

Как чувствует себя локатор F-35 с такой не очень маленькой целью (ЭПР 3м2 это небольших размеров самолет) на расстоянии 400км? Абсолютное значение сигнала -144.7 dBm на входе TRM нужно соотнести с уровнем шума, чтобы делать выводы по отношению сигнал/шум. Для этого воспользуемся материалами по потерям в антенно-фидерном тракте бортового радиолокатора AN/APG-81 установленного на F-35.

По приведенным данным, с учетом потерь на распространение шумовая температура всего приемного тракта составит 996К. Это значение получено путем суммирования значений шумовой температуры антенны с учетом атмосферного шума (96К) и потерь в приемном фидере (98К). Шумовая температура приемника 608К получена из комнатной температуры (290К) с учетом коэффициента шума 4,91 дБ — столько вносит собственно приемник, или LNA входящий в состав TRM. С учетом потерь в приемном тракте 1,31 получается искомое значение 996К.

Умножая шумовую температуру на постоянную Больцмана, получаем шумовую плотность мощности, приведенную ко входу приемника 1.374*10-20 Вт/Гц. Это относительная величина, которая показывает мощность шума на единицу ширины спектра. Чтобы получить абсолютное значение шума — шумовую мощность, необходимо учесть ширину полосы принимаемого сигнала. С длительностью зондирующего имульса 1 мкс требуемая полоса пропускания составит около 1 МГц; таким образом будем ориентироваться на шумовую мощность 1.374*10-20 Вт/Гц * 106 Гц =  1.374*10-14 Вт, или -108.62 дБм (мощность в дБ относительно значения 1 мВт). Много это или мало? Предположим, что эта мощность приложена к стандартной нагрузке 50 Ом, тогда шумовое напряжение на входе приемника составит около 0.83 мкВ. Вполне реальное значение.

Таким образом, шумовое значение на входе T/R модуля радиолокатора AN-APG-81 составит минус 109 дБм. Отношение сигнал/шум составит -144.7 dBm — 109 dBm = -35.7 dB. Не очень здорово, скажем так, но не будем забывать что позади еще схема диаграммообразования антенны, в которой сигнал основного лепестка сложится синфазно, шум сложится кое-как, и в результате отношение сигнал/шум на выходе антенны будет -35.7 dB + 35 dB = -0.7 dB, что уже не так плохо.

Подчеркнем еще раз: при воздействии на вход T/R модуля радиолокатор с АФАР теряет преимущество в использовании коэффициента усиления антенны, что ни много ни мало 35 дБ.

Динамический диапазон 12-битного АЦП в составе TRM составляет 72.2 дБ. Предположим что коэффициент передачи усилителя LNA перед АЦП равен единице, поскольку его значение не влияет на физику блокирования АЦП — меняется только масштаб величин. Естественно, что АЦП будет работать при существенно более значимых входных сигналах, но для нас имеет значение только относительный расчет. Тогда диапазон входных сигналов, которые полностью займут разрядную сетку АЦП, составит от -144.7 dBm до -144.7 dBm + 72.2 dB =  -72.5 dBm.

Чтобы стать самым сильным сигналом для АЦП (а это уже почти блокирование), постановщику помехи — джаммеру достаточно иметь мощность -10.2 dBm + 72.2 dB = 62 dBm, или 1.58 кВт. Таким образом, при мощности джаммера 1.58 кВт дальности 400км у радиолокатора F-35 оказывается под вопросом.

На самом деле, картинка несколько сложнее, поскольку мы имеем дело с импульсными сигналами, а значит они не обязательно должны перекрываться во времени. Если джаммер будет работать с duty circle 100%, то подавление будет полным, но этот режим требует больших энергоресурсов джаммера и не может использоваться в течение длительного времени.

Сделаем оценку того, какое воздействие окажет мощность помехи например 5 кВт, или 67 dBm. В этом случае эквивалентная минимальная величина отраженного от цели сигнала составит 67 dBm — 72.2 dB = -5.2 dBm. Такое значение соответствует дальности локатора около 225 км, при этом помеха точно также как и в предыдущем случае займет весь динамический диапазон АЦП, а полезный отраженный сигнал будет находиться на уровне одного бита.

В результате блокирования полезный сигнал будет потерян во всех TRM и формировать диаграмму уже не будет никакого смысла.

Заключение

В статье было исследовано влияние метода прямой оцифровки сигнала с антенного модуля АФАР радиолокатора AN/APG-81 истребителя-бомбардировщика F-35 и связанная с этим возможность блокирования АЦП модуля T/R. Получены оценки потребной мощности постановщика помех (джаммера), который находится на таком же расстоянии, как и цель локатора.

Значение пораженной дальности локатора AN/APG-81 составит 400км при мощности джаммера около 1.58 кВт и 225км при мощности джаммера около 5 кВт. При таком блокировании радиолокатор F-35 теряет возможности формирования диаграммы и подавления джаммера.

Данные приведены при непрерывном излучении джаммера, в импульсном режиме, когда отраженные от цели сигналы и помеха могут не перекрываться, степень подавления уменьшится.

Расчет произведен для 12-разрядных АЦП приемных модулей. С повышением разрядности эффективность подавления также уменьшится. Ее величину можно оценить пользуясь приведенным математическим аппаратом.

Блеск и горечь архитектуры OMAP 3530

Для встраиваемых систем выбор кубиков, которые можно сложить во что-нибудь путное, не так уж и велик. То, что находится прямо перед глазами, не дает однозначного выбора.

ARM хорош и к тому же быстро развивается, сопроцессор с плавающей точкой NEON с распараллеливанием выполнения (pipeline) уже само собой разумеющийся атрибут. В последнее время обозначилась новая мода —

Читать дальше

Проект в проекте

Подавляющее большинство событий политической, общественной, а то и семейной жизни воспринимаются как есть: люди исходят из предположения, что наблюдают истинные движущие силы процесса. Между тем, для каждого из участников готова строго определенная картинка происходящего. Организаторы могут не обольщаться: для них тоже есть соответствующие картинки, которые создаются на следующем, вышестоящем уровне иерархии. С точки зрения древних

Читать дальше

Трансляция видео на два HDMI экрана

Одновременная трасляция видео на два экрана

При проведении занятий и семинаров, да и при размещении нескольких экранов в больших залах возникает желание транслировать на них одну и ту же картинку. Конечно, для этого существуют готовые решения, но когда в загашнике есть Raspberry Pi, хочется побольше простору и гибкости. Поскольку для планирования трансляции можно написать

Читать дальше

Импортозамещение СКРС / VCS методом China Copy

Импортозамещение — эвфемизм, который на самом деле указывает на отсутствие собственных производственных возможностей. В области систем связи и радиоэлектроники переход на отечественную комплектацию и решения получился настолько болезненным, что многие фирмы изобрели ряд легких способов как продемонстрировать свою «импортозамещенность».

В немалой степени этому способствовала неразбериха в формулировках того, какая продукция может считаться отечественной или попросту

Читать дальше

Это действительно ваша разработка?

При разборе проблем в отечественной промышленной политике обычно обращаются к китайской действительности, где производится большая номенклатура продукции. Да и китайские заводы у всех на слуху. При этом в дискуссиях незаметно происходит фетишизация производства и подмена понятий: создается впечатление, что если завод производит радиоэлектронные изделия, то он знает и понимает как эти изделия создавать. Для многих

Читать дальше

АРП встраиваемый в РЛК «Комар-2»

Если к радиопеленгатору «Пихта-2С» применима фраза «первый микропроцессорный», то АРП «Комар-2» это следующий процессорный АРП, который базировался на технологиях Пихты. Его особенность в том, что он разрабатывался в составе чехословацкого радиолокационного комплекса «Комар-2», который создавался по заказу наших ВВС в Тесла Пардубице.

После разработки АРП «Пихта-2С» все пеленгационное направление перешло ко мне. Имеющийся задел требовал

Читать дальше

Ковариационная матрица и линейная трансформация

При рассмотрении метода главных компонент я не стал подробно останавливаться на том, в чем смысл связи корреляционной функции и линейного преобразования исходных данных. Сейчас пришло время вникнуть в это поподробнее. К тому же этот материал пригодится нам в будущем, когда будем рассматривать такой метод сверхразрешения, как MUSIC.

В изложении я минимизировал формульную часть; там где

Читать дальше